Adams Spectral Sequence

Zhonglin Wu

Department of mathematics, SUSTech, Shenzhen, China

12232837@sustech.edu.cn

October 16, 2023

4 0 F

1 [Mulitplative structure of Adams SS](#page-2-0)

2 [Calculation of](#page-4-0) E_2 page

- [Minimal resolution](#page-5-0)
- [May SS](#page-14-0)
- [Lambda algebra](#page-19-0)
- **[Davis Mahowald SS](#page-20-0)**

3 [Calculating the differential](#page-21-0)

4 0 8

Multiplicative structure of Adams SS

Definition

M,N,P are R-modules, C_*, D_* are projective resolution of M,N. For $[\alpha] \in \text{Ext}_{R}^{s,t}(M,N), [\beta] \in \text{Ext}_{R}^{u,v}(N,P)$, we can represent them by $C_s\to \Sigma^tN$, $D_u\to \Sigma^vP$. Then we can define $[\beta][\alpha]\in Ext_R^{s+u,t+v}(M,P)$ by $\Sigma^t \beta \circ \alpha: \mathcal{C}_{\mathsf{s}+\mathsf{u}} \to \Sigma^{t+\mathsf{v}} P.$ It can be represent by the following diagram:

Figure: multi. diagram

Theorem

This multiplicative satisfy:

- \bullet d_r($\alpha\beta$) = d_r(α) β + (-1)^{s+u} α d_r(β)
- The multiplicative structure on E_{r+1} is induced by that on E_r
- The multiplicative structure on E_{∞} corresponds to the multiplicative structure on $\pi_*(X)$ (need X is a ring spectrum)

Proof

Ref to Section 2.3 of Green Book (Basic idea: Consider the product of two (minimal) resolution.

To calculate the E_2 page of (classical) Adams SS, We have the following methods:

- **•** Minimal resolution
- May SS
- Lambda algebra

4 0 8

 QQQ

Steps of calculating minimal resolution: Additive structure

$$
\ldots \ldots \to B_2 \to B_1 \to B_0 = A_2 \to \mathbb{Z}_2 \tag{1}
$$

$$
\bullet\text{ Find kernal of }\mathcal{A}_2\rightarrow \mathbb{Z}_2:\alpha_k=\mathcal{S}q^{2^{k-1}}
$$

- Generate B_1 by α_i freely (as A_2 mod)
- Find $ker(B_1 \rightarrow B_0)$: the generator of "relation"

Relations Possible geneator Genepter K α' α' α' $\frac{1}{2}6$ $\alpha_1 = 0$ $\bar{\Sigma}$ \mathcal{R} $3 5.662.598$ $S_1 \times S_2$ S_9^{λ} d₂ α_3 $4\kappa_3$, $56\kappa_1$ $56\kappa_1$ $565\kappa_1$ $565\kappa_1$ $56\kappa_2$ 5.566 5.62 5.62 6.62 $6.$ $s_f^{\prime} s_s s_f^{\alpha} s_l$ ζ_{ξ}^{3} ζ_{ξ}^{4} α_{1} ζ_{ξ}^{4} α_{1} 359568120 $59x^2=0$ 6.5983 $5\frac{3}{9}$ x + $5\frac{3}{9}$ $5\frac{1}{9}$ de = 0 S_1^4 \propto S_4^5 S_1^6 \propto S_5^7 S_1^6 \propto \sim \sim $s_j^4 s_j^1 \propto_i \quad s_j^5 \propto_i$

Figure: Table of generators & relations

4 0 F

Figure: $ker(B_1 \rightarrow B_0)$, low deg part

造

÷.

We can write these steps as pseudocode:

 κ_{i} - κ_{k} $d_{i} \sim d_{k}$ $d_{i} \sim d_{k}$ $d_{i} = \sum b_{ij} \beta_{i}$
Input: generior , with their degree and relation it repreneted in previous Bk. $Relation = \sum$. for deg in ronge (1, +4). (or any integral you want to stop) # Goverate all of the possible geneator (in 2,- mod str) P pssible geneators $=\Box$, programs in the order of deg for x_j in $\{x_k\}$ in the minorial situation, me just reed a basis of $2z$ -read (k-mod) for <u>Cadmissible</u> seg) in (admissible seps of (deg-dj)) Possible generators append ladmissible sept κ_j # Generate all of the possible relation $Generotors = \Box$, Possible Relations = [] For PG in Possible generators If PG not linear dependence with Gamentons (in the book (adnoting) β_j) Pusible Relations append (the way of get PG from Generators - PG) Else, Genertors. append (PG) # Get all of the relation For PR in Porcible Relations If PR not linear dependence with Relations (in the basis (show as) ofc) Relations append (PR).

 QQ

Steps of calculating minimal resolution: Multi. structure: Follow the definition of multi. structure, we get a diagram:

$$
\beta_1 \mapsto Sq^1 \alpha_1,\n\beta_2 \mapsto Sq^2 \alpha_2 + Sq^3 \alpha_1,\n\beta_3 \mapsto Sq^2 Sq^1 \alpha_2 + Sq^1 \alpha_3 + Sq^4 \alpha_1,\n\beta_4 \mapsto Sq^4 \alpha_3 + Sq^7 \alpha_1 + Sq^6 \alpha_2,\n\beta_5 \mapsto Sq^4 Sq^1 \alpha_3 + Sq^1 \alpha_4 + Sq^8 \alpha_1 + Sq^7 \alpha_2,\n\beta_6 \mapsto Sq^2 \alpha_4 + Sq^4 Sq^2 \alpha_3 + Sq^8 \alpha_2 + Sq^7 Sq^2 \alpha_1.
$$

Figure: multi. diagram

4 0 8

$$
\begin{array}{llll} \underline{f_1\!:\!B_1\to B_2} & \underline{f_2\!:\!B_2\to B_3} & \underline{f_3\!:\!B_3\to B_4} & \underline{f_4\!:\!B_4\to B_5} \\ \hline \alpha_1\mapsto 1 & \beta_1\mapsto \alpha_1 & \gamma_1\mapsto \beta_1 & \delta_1\mapsto \gamma_1 \\ \alpha_2\mapsto 0 & \beta_2\mapsto \mathrm{Sq}^1\,\alpha_2 & \gamma_2\mapsto \beta_2 & \delta_2\mapsto \gamma_3 \\ \alpha_3\mapsto 0 & \beta_3\mapsto \alpha_3 & \gamma_3\mapsto \beta_5+\mathrm{Sq}^1\,\beta^4 \\ \alpha_4\mapsto 0 & \beta_4\mapsto \mathrm{Sq}^3\,\alpha_3 & \gamma_4\mapsto \mathrm{Sq}^1\,\beta_5+\mathrm{Sq}^2\,\beta_4+\mathrm{Sq}^8\,\beta_1 \\ \alpha_5\mapsto 0 & \beta_5\mapsto \alpha_4 & \gamma_5\mapsto \mathrm{Sq}^1\,\beta_6 \\ \beta_6\mapsto \mathrm{Sq}^7\,\alpha_2 & & \end{array}
$$

Figure: Table of multi. $\alpha_1(h_0)$

重

∢ ロ ≯ ∢ 伊 ≯

FIGURE 1.9. Indecomposables in $\operatorname{Ext}_{A}^{s,t}(\mathbb{F}_{2},\mathbb{F}_{2})$ for $0\leq t-s\leq 24$

Figure: E_2 page of Adams SS, $0 \le t - s \le 24$

4 **D**

What's more, we can define Steenrod operation

$$
Sqi: ExtAs,t(H*(X), \mathbb{Z}) \to ExtAs+i,2t(H*(X), \mathbb{Z})
$$
 (2)

on E_2 page. It can be defined as follow:

A little more generally, there are Steenrod operations

$$
Sq^i\colon \operatorname{Ext}_{\Gamma}^{s,t}(L,\mathbb{F}_2) \longrightarrow \operatorname{Ext}_{\Gamma}^{s+i,2t}(L,\mathbb{F}_2)
$$

for any cocommutative Γ -module coalgebra L. Let $C_* \to L$ be a free Γ -module resolution, and let $\Delta: W_* \otimes C_* \to C_* \otimes C_*$ be a Σ_2 -equivariant map of Γ -module complexes covering the coproduct $\psi: L \to L \otimes L$. For each cocycle $x: C_s \to \Sigma^t \mathbb{F}_2$ the composite

$$
C_{2s-i} \cong \mathbb{F}_2\{e_i\} \otimes C_{2s-i} \subset W_i \otimes C_{2s-i} \subset (W_* \otimes C_*)_2s
$$

$$
\stackrel{\Delta}{\longrightarrow} (C_* \otimes C_*)_2s \stackrel{x \otimes x}{\longrightarrow} \Sigma^t \mathbb{F}_2 \otimes \Sigma^t \mathbb{F}_2 \cong \Sigma^{2t} \mathbb{F}_2
$$

Figure: Definition of Steenrod operation on Ext

Service

(□) (_□) (

 QQQ

if X is a H_{∞} ring spectrum. Then there is a relation between differential and Steenrod operation:

DEFINITION 11.21. Let $A \in E_2^{s,t}$, $B_1 \in E_2^{s+r_1,t+r_1-1}$ and $B_2 \in E_2^{s+r_2,t+r_2-1}$
be classes in a spectral sequence with differentials $d_r: E_r^{s,t} \to E_r^{s+r,t+r-1}$. The notation

$$
d_*(A) = B_1 \dotplus B_2
$$

means that $d_r(A) = 0$ for $2 \leq r < \min\{r_1, r_2\}$, while

$$
\begin{cases} d_{r_1}(A) = B_1 & \text{if } r_1 < r_2, \\ d_r(A) = B_1 + B_2 & \text{if } r_1 = r = r_2, \text{ and} \\ d_{r_2}(A) = B_2 & \text{if } r_1 > r_2. \end{cases}
$$

THEOREM 11.22 (45) Thm. VI.1.1 and VI.1.2]). Let $E^{*,*}_r(Y)$ be the mod 2 Adams spectral sequence for an H_{∞} ring spectrum Y, and let $x \in E_2^{s,t}(Y)$ be an element that survives to the E_r -term, where $r \geq 2$. Let $0 \leq i \leq s$, and let $v =$ $v(t-i)$, $a = a(t-i)$ and \bar{a} be as just defined. Then

$$
d_*(Sq^i(x)) = Sq^{i+r-1}(d_r(x)) + \begin{cases} 0 & \text{if } v > s-i+1, \\ \bar{a} \, \bar{x} \, d_r(x) & \text{if } v = s-i+1, \\ \bar{a} \, Sq^{i+v}(x) & \text{if } v = s-i \text{ or } v \le \min\{s-i, 10\}. \end{cases}
$$

Figure: Relation between Steenrod operation and differential

 QQQ

イロト イ押ト イヨト イヨト

Prop

$$
Ext^{s,t}_A(H^*(X),\mathbb{Z}) \cong Ext^{s+i,2t}_{A_*}(\mathbb{Z},H_*(X))
$$
 (3)

Prop

 $A_* = P(\xi_i, \xi_2, \dots)$ where $|\xi_n| = 2^n - 1$, and the coproduct on A_* is given by i

$$
\Delta \xi_n = \sum_{0 \le i \le n} \xi_{n-i}^{2^i} \otimes \xi_i \tag{4}
$$

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q @

To calculate this Ext, we can construct cobar complex as the A_* injective comodule resolution:

3.1.2. PROPOSITION. The E_2 -term for the classical Adams spectral sequence for $\pi_*(X)$ is the cohomology of the cobar complex $C^*_A(H_*(X))$ defined by

 C_A^s $(H_*(X)) = \bar{A}_* \otimes \cdots \otimes \bar{A}_* \otimes H_*(X)$

(with s tensor factors of \bar{A}_*). For $a_i \in A_*$ and $x \in H_*(X)$, the element $a_1 \otimes \cdots a_s \otimes x$ will be denoted by $[a_1|a_2|\cdots|a_s]x$. The coboundary operator $d_s\colon C^s_{A_s}(H_*(X))\to$ $C^{s+1}_A(H_*(X))$ is given by

$$
d_s[a_1|\cdots|a_s]x = [1|a_1|\cdots|a_s]x + \sum_{i=1}^s (-1)^i [a_1|\cdots|a_{i-1}|a_i'|a_i''|a_{i+1}|\cdots|a_s]x
$$

+ $(-1)^{s+1}[a_1|\cdots|a_s]x'x'',$

where $\Delta a_i = a'_i \otimes a''_i$ and $\psi(x) = x' \otimes x'' \in A_* \otimes H_*(X)$. [A priori this expression lies in $A_*^{\otimes s+1} \otimes H_*(X)$. The diligent reader can verify that it actually lies in $\bar{A}^{\otimes s+1}_{\ast} \otimes H_{*}(X)$.

Figure: Definition of cobar complex, and its relation to Adams SS

イロト イ母ト イヨト イヨト

 QQQ

May SS

Definition

For $p=2$,

$$
E^{0}A_{*}=E(\xi_{i,j}:i>0,j\geq 0)
$$
 (5)

with coproduct

$$
\Delta \xi_{i,j} =_{0 \leq k \leq i} \xi_{i-k,j+k} \otimes \xi_{k,j} \tag{6}
$$

where $\xi_{0,j}=1$ and $\xi_{i,j}$ is the projection of $\xi_i^{2^j}$ i

Theorem

For p=2, $Ext_{E^0A_*}^{***}(\mathbb{Z}_2,\mathbb{Z}_2)$ is the cohomology of the complex

$$
V^{***} = P(h_{i,j}: i > 0, j \ge 0)
$$
 (7)

with $d_{i,j} = \sum_{0 < k < i} h_{k,j} h_{i-k,j+k}$, where $h_{i,j} \in V^{1,2^j(2^i-1),i}$ corresponds to $\xi_{i,j} \in A_*$

Theorem

There is a spectral sequence converging to

$$
Ext_{A_*}^{**}(\mathbb{Z}_2, \mathbb{Z}_2)
$$
 (8)

with
$$
V^{***} = E_1^{***}
$$
 and $d_r : E_r^{s,t,u} \to E_r^{s+1,t,u+1-r}$

Pf: Green book

4 D F

同→

重

May SS[']

3.2.8. LEMMA. In the range $t-s \leq 13$ the E_2 -term for the May spectral sequence $(3.2.3)$ has generators

$$
h_j = h_{1,j} \in E_2^{1,2^j,1},
$$

$$
b_{i,j} = h_{i,j}^2 \in E_2^{2,2^{j+1}(2^i-1),2^i},
$$

and

$$
x_7 = h_{20}h_{21} + h_{11}h_{30} \in E_2^{2,9,4}
$$

with relations

$$
h_j h_{j+1} = 0,
$$

$$
h_2 b_{20} = h_0 x_7,
$$

and

$$
h_2 x_7 = h_0 b_{21}.\tag{}
$$

Figure: E_2 page of May SS

造

 $A \Box B$ A

lambda algebra

More precisely, Λ is a bigraded $\mathbf{Z}/(2)$ -algebra with generators $\lambda_n \in \Lambda^{1,n+1}$ $(n \geq 0)$ and relations

(3.3.1)
$$
\lambda_i \lambda_{2i+1+n} = \sum_{j \ge 0} {n-j-1 \choose j} \lambda_{i+n-j} \lambda_{2i+1+j} \text{ for } i, n \ge 0
$$

with differential

(3.3.2)
$$
d(\lambda_n) = \sum_{j \ge 1} {n-j \choose j} \lambda_{n-j} \lambda_{j-1}.
$$

Note that d behaves formally like left multiplication by λ_{-1} .

3.3.3. DEFINITION. A monomial $\lambda_i, \lambda_i, \dots, \lambda_i \in \Lambda$ is admissible if $2i_r \geq i_{r+1}$ for $1 \leq r < s$. $\Lambda(n) \subset \Lambda$ is the subcomplex spanned by the admissible monomials with $i_1 < n$.

The following is an easy consequence of 3.3.1 and 3.3.2.

3.3.4. PROPOSITION.

(a) The admissible monomials constitute an additive basis for Λ .

(b) There are short exact sequences of complexes

$$
0 \to \Lambda(n) \to \Lambda(n+1) \to \Sigma^{n} \Lambda(2n+1) \to 0.
$$

The significant property of Λ is the following.

3.3.5. THEOREM (Bousfield *et al.* [2]). (a) $H(\Lambda) = \text{Ext}_{A_*}(\mathbf{Z}/(2), \mathbf{Z}/(2)),$ the classical Adams E_2 -term for the sphere.

(b) $H(\Lambda(n))$ is the E₂-term of a spectral sequence converging to $\pi_*(S^n)$.

(c) The long exact sequence in cohomology $(3.3.6)$ given by $3.3.4(b)$ corresponds to the EHP sequence, i.e., to the long exact sequence of homotopy groups of the fiber sequence (at the prime 2)

$$
S^n \to \Omega S^{n+1} \to \Omega S^{2n+1} \quad \text{(see 1.5.1)}.
$$

Figure: Def. of lambda algebra

PROPOSITION 2.3. Suppose that we have chosen a sequence of Γ -modules N_{σ} , for $\sigma > 0$, and an exact chain complex

$$
\dots \stackrel{\partial_3}{\longrightarrow} \Gamma/\!/\Lambda\otimes N_2 \stackrel{\partial_2}{\longrightarrow} \Gamma/\!/\Lambda\otimes N_1 \stackrel{\partial_1}{\longrightarrow} \Gamma/\!/\Lambda\otimes N_0 \stackrel{\epsilon}{\longrightarrow} k\to 0
$$

of Γ -modules with diagonal Γ -action. Then there is a strongly convergent trigraded spectral sequence

$$
E_1^{\sigma,s,t} = \text{Ext}_{\Lambda}^{s-\sigma,t}(N_{\sigma}\otimes M,k) \Longrightarrow_{\sigma} \text{Ext}_{\Gamma}^{s,t}(M,k).
$$

The d_r -differentials have (σ, s, t) -tridegree $(r, 1, 0)$ and there are isomorphisms

$$
E_{\infty}^{\sigma,s,t} \cong F^{\sigma} \operatorname{Ext}^{s,t}(M) / F^{\sigma+1} \operatorname{Ext}^{s,t}(M)
$$

for all σ , s and t, where $\{F^{\sigma} \to x^{s,t}(M)\}_{\sigma}$ is a finite and exhaustive filtration of $\text{Ext}^{s,t}(M) = \text{Ext}^{s,t}_{\Gamma}(M,k).$

Figure: Davis Mahowald SS

∍

∋ x e ∋

 QQ

- \bullet Target=0
- \bullet dr \circ dr = 0
- $d_r(xy) = d_r(x)y + xd_r(y)$
- Hurewicz map(e.g. $S \rightarrow tmf$)
- Steenrod operation

4 D F

э

Calculating the differential

Figure: E_2 page of tmf

4 **D**

 QQ

The End

B × \mathcal{A} .

K ロ ▶ K 御 ▶ K

重